(a+b)^7 Binomial Expansion

7 min read Jun 16, 2024
(a+b)^7 Binomial Expansion

Binomial Expansion of (a + b)<sup>7</sup>

The binomial theorem provides a powerful tool for expanding expressions of the form (a + b)<sup>n</sup>, where n is a positive integer. In this article, we'll explore the expansion of (a + b)<sup>7</sup>.

Understanding the Binomial Theorem

The binomial theorem states that:

(a + b)<sup>n</sup> = <sup>n</sup>C<sub>0</sub>a<sup>n</sup>b<sup>0</sup> + <sup>n</sup>C<sub>1</sub>a<sup>n-1</sup>b<sup>1</sup> + <sup>n</sup>C<sub>2</sub>a<sup>n-2</sup>b<sup>2</sup> + ... + <sup>n</sup>C<sub>n-1</sub>a<sup>1</sup>b<sup>n-1</sup> + <sup>n</sup>C<sub>n</sub>a<sup>0</sup>b<sup>n</sup>

where <sup>n</sup>C<sub>r</sub> is the binomial coefficient, calculated as n!/(r!(n-r)!). This coefficient represents the number of ways to choose r objects from a set of n objects.

Applying the Theorem to (a + b)<sup>7</sup>

Let's apply the binomial theorem to expand (a + b)<sup>7</sup>:

(a + b)<sup>7</sup> = <sup>7</sup>C<sub>0</sub>a<sup>7</sup>b<sup>0</sup> + <sup>7</sup>C<sub>1</sub>a<sup>6</sup>b<sup>1</sup> + <sup>7</sup>C<sub>2</sub>a<sup>5</sup>b<sup>2</sup> + <sup>7</sup>C<sub>3</sub>a<sup>4</sup>b<sup>3</sup> + <sup>7</sup>C<sub>4</sub>a<sup>3</sup>b<sup>4</sup> + <sup>7</sup>C<sub>5</sub>a<sup>2</sup>b<sup>5</sup> + <sup>7</sup>C<sub>6</sub>a<sup>1</sup>b<sup>6</sup> + <sup>7</sup>C<sub>7</sub>a<sup>0</sup>b<sup>7</sup>

Now, let's calculate the binomial coefficients:

  • <sup>7</sup>C<sub>0</sub> = 1
  • <sup>7</sup>C<sub>1</sub> = 7
  • <sup>7</sup>C<sub>2</sub> = 21
  • <sup>7</sup>C<sub>3</sub> = 35
  • <sup>7</sup>C<sub>4</sub> = 35
  • <sup>7</sup>C<sub>5</sub> = 21
  • <sup>7</sup>C<sub>6</sub> = 7
  • <sup>7</sup>C<sub>7</sub> = 1

Substituting these values into the expansion, we get:

(a + b)<sup>7</sup> = 1a<sup>7</sup> + 7a<sup>6</sup>b + 21a<sup>5</sup>b<sup>2</sup> + 35a<sup>4</sup>b<sup>3</sup> + 35a<sup>3</sup>b<sup>4</sup> + 21a<sup>2</sup>b<sup>5</sup> + 7ab<sup>6</sup> + 1b<sup>7</sup>

Therefore, the binomial expansion of (a + b)<sup>7</sup> is a<sup>7</sup> + 7a<sup>6</sup>b + 21a<sup>5</sup>b<sup>2</sup> + 35a<sup>4</sup>b<sup>3</sup> + 35a<sup>3</sup>b<sup>4</sup> + 21a<sup>2</sup>b<sup>5</sup> + 7ab<sup>6</sup> + b<sup>7</sup>.

Observations and Properties

  • Symmetry: Notice that the coefficients of the terms are symmetrical. This is a general property of binomial expansions.
  • Pascal's Triangle: The coefficients in the binomial expansion can also be found using Pascal's Triangle. Each row of Pascal's Triangle represents the coefficients of the binomial expansion for a particular power of (a + b).

Applications of the Binomial Theorem

The binomial theorem has widespread applications in various fields, including:

  • Probability: Calculating probabilities in coin toss experiments and other random events.
  • Algebra: Simplifying complex algebraic expressions and solving equations.
  • Calculus: Finding derivatives and integrals of functions involving binomial expansions.
  • Computer Science: Implementing algorithms for data compression and cryptography.

Understanding the binomial theorem and its applications is crucial for success in various areas of mathematics, science, and engineering.

Related Post


Featured Posts